Cohen-Macaulay local rings of dimension two and an extended version of a conjecture of J. Sally

M.E. Rossi ${ }^{*}$, G. Valla
Department of Mathematics, University of Genoa, Via Dodecaneso 35, 16146 Genoa, Italy

Communicated by T. Hibi; received 10 July 1996
Dedicated to the memory of Professor Hideyuki Matsumura

Abstract

In this paper we prove an extended version of a conjecture of J. Sally. Let (A, \mathscr{M}) be a Cohen-Macaulay Iocal ring of dimension d, multiplicity e and embedding codimension h. If the initial degree of A is bigger than or equal to t and $e=\binom{h+t-1}{h}+1$, we prove that the depth of the associated graded ring of A is at least $d-1$ and the h-vector of A has no negative components. The conjecture of Sally was dealing with the case $t=2$ and was proved by these authors in a previous paper. Some new formulas relating certain numerical characters of a two-dimensional Cohen-Macaulay local ring are also given. (c) 1997 Published by Elsevier Science B.V.

1991 Math. Subj. Class.: 14M05, 13D99

0. Introduction

Let (A, \mathscr{M}) be a local Cohen-Macaulay ring of dimension d, embedding dimension N and multiplicity e. By a classical result of Abhyankar (see [1]), we have $e \geq$ $N-d+1$ and if equality holds, the structure of the associated graded ring $G:=$ $\bigoplus_{n \geq 0}\left(\mathscr{M}^{n} / \mathscr{M}^{n+1}\right.$) is well understood and G itself is Cohen-Macaulay (see [10]). In the case $e=N-d+2$, J. Sally proved in [12] that G is not necessarily Cohen-Macaulay, the exceptions being the Cohen-Macaulay local rings of maximal type $e-2$. The main open question there was about the possible depths of G and in fact Sally made the conjecture that $\operatorname{depth}(G) \geq d-1$ and gave strong evidence for this to be true.

In [9] we proved this conjecture and also described all the possible Hilbert functions of A.

[^0]But very often we know that a given algebraic variety does not lie on a quadric or more generally does not lie on any hypersurface of degree less than a certain integer t. In this case the bound given by Abhyankar is no more sharp, and in [4] the right bound, involving the initial degree t, is given and the extremal case is studied. It turns out that if we let $h:=N-d$, then $e \geq\binom{ h+t-1}{h}$ and, if equality holds, A has maximal Hilbert function and G is Cohen-Macaulay. If instead we have $e=\binom{h+t-1}{h}+1$, then G is not necessarily Cohen-Macaulay (see the examples at the end of the paper), the possible exceptions being again the Cohen-Macaulay local rings of maximal type $\binom{h+t-2}{t-1}$ (see [8, Theorem 3.10]).

In Section 3 we prove that, also in this more general setting, $\operatorname{depth}(G) \geq d-1$ and describe all the possible Hilbert functions of A. This gives a complete solution to the extended version of Sally's conjecture we refer in the title. We discussed this problem in [2] where the guess was formulated.

To us, one of the more interesting aspects of our proof concerns what our methods show about the relationship between certain numerical characters of a Cohen-Macaulay local ring of dimension two, a topic to which Section 2 is devoted.

1. Preliminaries

Let (A, \mathscr{M}) be a local ring of dimension d, multiplicity e and residue field $k=A / \mathscr{M}$. The Hilbert function of A is by definition the Hilbert function of the associated graded ring of A which is the homogeneous k-algebra

$$
G:=g_{\cdot \mu}(A)=\bigoplus_{n \geq 0} \mathscr{M}^{n} / \mathscr{M}^{n+1}
$$

Hence,

$$
H_{A}(n)=H_{G}(n)=\operatorname{dim}_{k}\left(\mathscr{M}^{n} / \mathscr{M}^{n+1}\right)
$$

The generating function of this numerical function is the power series

$$
P_{A}(z)=\sum_{n \in \mathbb{N}} H_{A}(n) z^{n}
$$

which is called the Hilbert Series of A. This series is rational and there exists a polynomial $h(z) \in \mathbf{Z}[z]$ such that

$$
P_{A}(z)=\frac{h(z)}{(1-z)^{d}},
$$

where $h(1)=e \geq 1$.
The polynomial $h(z)=h_{0}+h_{1} z+\cdots+h_{s} z^{s}$ is called the h-polynomial of A and the vector $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ the h-vector of A.

For every $i \geq 0$, we let

$$
e_{i}:=\frac{h^{(i)}(1)}{i!}
$$

and

$$
\binom{X+i}{i}:=\frac{(X+i) \cdots(X+1)}{i!}
$$

Then

$$
e_{0}=e
$$

and the polynomial

$$
p_{A}(X):=\sum_{i=0}^{d-1}(-1)^{i} e_{i}\binom{X+d-i-1}{d-i-1}
$$

has rational coefficients and degree $d-1$; further for every $n \gg 0$

$$
p_{A}(n)=H_{A}(n)
$$

The polynomial $p_{A}(X)$ is called the Hilbert polynomial of A.
The embedding codimension of A is the integer

$$
h:=\operatorname{embcod}(A):=H_{A}(1)-d
$$

It is clear that $h=h_{1}$, the coefficient of z in the h-polynomial of A. Further $\operatorname{embcod}(A)$ $=0$ if and only if A is a regular local ring.

We denote by $\operatorname{indeg}(A)$ the initial degree of A which is the integer defined as

$$
\operatorname{indeg}(A)=\min \left\{j: H_{A}(j)<\binom{H_{A}(1)+j-1}{j}\right\}
$$

If a is an element in $\mathscr{M}, a \notin \mathscr{M}^{2}$, then $H_{A}(1)=H_{A / a A}(1)+1$ and we may write $\mathscr{M}=\left(a_{1}, \ldots, a_{n}\right)$ where $a-a_{1}$ and $n=H_{A}(1)$. Then the associated graded ring of A can be presented as

$$
G-k\left[X_{1}, \ldots, X_{n}\right] / I
$$

where I is the homogeneous ideal generated by the forms F of degree i such that

$$
F\left(a_{1}, \ldots, a_{n}\right) \in \mathscr{M}^{i+1}
$$

If $\operatorname{indeg}(A) \geq t$, then $I_{j}=0$ for every $j \leq t-1$ and we claim that

$$
\begin{equation*}
\mathscr{M}^{i+1}: a=\mathscr{M}^{i} \forall i=0 \ldots, t-1 \tag{1}
\end{equation*}
$$

Since $\mathscr{M}^{2}: a=\mathscr{M}$, this is clear if $t \leq 2$; if $t \geq 3$, we may assume, by contradiction, that $\mathscr{M}^{i}: a=\mathscr{M}^{i-1}$ and $\mathscr{M}^{i+1}: a \neq \mathscr{M}^{i}$ for some $i, 2 \leq i \leq t-1$. Let $b \notin \mathscr{M}^{i}$ be an element such that $a b \in \mathscr{M}^{i+1}$. Then $b \in \mathscr{M}^{i-1}$ so that $b=F\left(a_{1}, \ldots, a_{n}\right)$ where $F \subset k\left[X_{1}, \ldots, X_{n}\right]$ is a form of degree $i-1$. It follows that

$$
a F\left(a_{1}, \ldots, a_{n}\right)=a b \in \mathscr{M}^{i+1}
$$

hence $0 \neq X_{1} F \in I_{i}$, which is a contradiction. This proves the claim.

Now we recall a classical result of Singh [13] which asserts that for every $a \in \mathscr{M}$ and for every $i \geq 0$

$$
H_{A}(i)=\sum_{j=0}^{i} H_{A / a A}(j)-\lambda\left(\mathscr{M}^{i+1}: a / \mathscr{M}^{i}\right)
$$

where $\lambda(M)$ denotes the length of an A-module M.
Using this equality and (1), we easily get that for every $a \in \mathscr{M}, a \notin \mathscr{M}^{2}$

$$
\begin{equation*}
\operatorname{indeg}(A / a A) \geq \operatorname{indeg}(A) \tag{2}
\end{equation*}
$$

We recall that if A has positive dimension, an element x in \mathscr{A} is called superficial for A if there exists an integer $c>0$ such that

$$
\left(\mathscr{M}^{n}: x\right) \cap \mathscr{M}^{c}=\mathscr{M}^{n-1}
$$

for every $n>c$.
It is easy to see that a superficial element x is not in \mathscr{M}^{2} and that x is superficial for A if and only if $x^{*}:=\bar{x} \in \mathscr{M} / \mathscr{M}^{2}$ does not belong to the relevant associated primes of G. Hence, if the residue field is infinite, superficial elements always exist.

Further if A has positive depth, every superficial element is also a regular element in A.

A sequence x_{1}, \ldots, x_{r} in the local ring (A, \mathscr{M}) is called a superficial sequence for A, if x_{1} is superficial for A and $\overline{x_{i}}$ is superficial for $A /\left(x_{1}, \ldots, x_{i-1}\right)$ for $2 \leq i \leq r$.

By passing, if needed, to the local ring $A[X]_{(, A, X)}$ we may assume that the residue field is infinite. Hence if $\operatorname{depth}(A) \geq r$, every superficial sequence x_{1}, \ldots, x_{r} is also a regular sequence in A. Such a sequence has the right properties for a good behaviour of the numerical invariants under reduction modulo the ideal it generates.

In particular if $J=\left(x_{1}, \ldots, x_{r}\right)$, and $(B, \mathcal{N})=(A / J, \mathscr{M} / J)$, then B is a local ring with - $\operatorname{dim}(B)=d-r$,

- If $\operatorname{depth}(A) \geq r$, then $\operatorname{depth}(B)=\operatorname{depth}(A)-r$,
- $\operatorname{embcod}(A)=\operatorname{embcod}(B)$,
- indeg $(B) \geq \operatorname{indeg}(A)$,
- $e_{i}(A)=e_{i}(B)$ for $i=0, \ldots, d-r$.

The following relevant properties of superficial sequences will also be needed.

- $\operatorname{depth}\left(g r_{\mathscr{M}}(A)\right) \geq r \Leftrightarrow x_{1}^{*}, \ldots, x_{r}^{*}$ is a regular sequence in $\operatorname{gr}_{\mathscr{M}}(A) \Leftrightarrow P_{A}(z)=$ $P_{B}(z) /(1-z)^{r} \Leftrightarrow \mathscr{M}^{j} \cap J=J \mathscr{M}^{j-1}$ for every $j \geq 1$.
- $\operatorname{depth}\left(\operatorname{gr} r_{\mathcal{H}}(A)\right) \geq r+1 \Leftrightarrow \operatorname{depth}\left(\operatorname{gr} r_{\mathcal{N}}(B)\right) \geq 1$.

This last property is the so-called Sally's machine which is a very important trick to reduce dimension in questions relating to depth properties of $g r_{M}(A)$. Sally proved this result in the case $r=d-1$ in [11]; a complete and nice proof of the general case can be found in Lemma 2.2 of [5].

2. Two dimensional Cohen-Macaulay local rings

In this section we collect some results which relate certain numerical invariants of a Cohen-Macaulay local ring of dimension two.

We first recall that in the case A is a one-dimensional Cohen-Macaulay local ring and x a superficial element, from the diagram

$$
\begin{array}{ccc}
A \supset \mathscr{M}^{j} \supset \mathscr{M}^{j+1} \\
\cup & \cup & \cup \\
x A \supset x \mathscr{M}^{j}= & x \mathscr{M}^{j}
\end{array}
$$

we get

$$
H_{A}(j)=\hat{\lambda}\left(\mathscr{M}^{j} / x \mathscr{M}^{j}\right)-\lambda\left(\mathscr{M}^{j+1} / x \mathscr{M}^{j}\right) .
$$

But $\lambda(A / x A)=e$ and $A / \mathscr{M}^{j} \simeq x A / x \cdot \mathcal{A}^{j}$ so that for every $j \geq 0$

$$
\begin{equation*}
H_{A}(j)=e-\lambda\left(\mathscr{M}^{j+1} / x \mathscr{M}^{j}\right) \tag{3}
\end{equation*}
$$

If we let $\sigma_{j}:=\lambda\left(\mathscr{M}^{j+1} / x \mathscr{M}^{j}\right)$, we have $\sigma_{0}=e-H_{A}(0)=e-1$, and if s is the degree of the h-polynomial of A, then $\sigma_{j}=0$ for every $j \geq s$ and

$$
P_{A}(z)=\frac{1+\left(\sigma_{0}-\sigma_{1}\right) z+\left(\sigma_{1}-\sigma_{2}\right) z^{2}+\cdots+\left(\sigma_{s-2}-\sigma_{s-1}\right) z^{s-1}+\sigma_{s-1} z^{s}}{1-z}
$$

This clearly implies

$$
e_{1}=\sum_{j=0}^{s-1} \sigma_{j}
$$

and

$$
e_{2}=\sum_{j=1}^{s-1} j \sigma_{j} .
$$

Similar formulas can be found in the two-dimensional case. We need new numerical invariants which have been introduced by Huneke in [6]. Since we are assuming A to be Cohen-Macaulay, we can find in \mathscr{M} a superficial sequence x, y and we let $J=(x, y)$ be the ideal they generate. The main point in Huneke's result is the fact that if $\mathscr{F} \supseteq \mathscr{P}$ are ideals in A then we have a short exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathscr{I}: J / \mathscr{P}: J \rightarrow(\mathscr{I} / \mathscr{P})^{2} \rightarrow J \mathscr{I} / J \mathscr{P} \rightarrow 0 . \tag{4}
\end{equation*}
$$

For every integer $n \geq 1$ we let

$$
v_{n}:=\lambda\left(\mathscr{M}^{n+1} / J \mathscr{M}^{n}\right)-\lambda\left(\mathscr{M}^{n}: J / \mathscr{M}^{n-1}\right)
$$

and for $n=0$ we let

$$
v_{0}:=e-1 .
$$

By using (4), Huneke proved that for every $n \geq 1$

$$
\begin{equation*}
H_{A}(n)-H_{A}(n-1)=e-v_{n} . \tag{5}
\end{equation*}
$$

Let s be the degree of the h-polynomial of A; since the h-polynomial of a twodimensional local ring is the second difference of its Hilbert function, we must have $v_{j}=0$ for every $j \geq s$ and

$$
P_{A}(z)=\frac{1+\left(v_{0}-v_{1}\right) z+\left(v_{1}-v_{2}\right) z^{2}+\cdots+\left(v_{s-2}-v_{s-1}\right) z^{s-1}+v_{s-1} z^{s}}{(1-z)^{2}}
$$

This gives

$$
\begin{equation*}
e_{1}=\sum_{j=0}^{s-1} v_{j} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{2}=\sum_{j=1}^{s-1} j v_{j} . \tag{7}
\end{equation*}
$$

Unfortunately the integers v_{i} can be negative; however, the following construction due to Ratliff and Rush (see [7]), gives a way to overcome the problem.

Let (A, \mathscr{A}) be a Cohen-Macaulay local ring. For every n we consider the chain of ideals

$$
\mathscr{M}^{n} \subseteq \mathscr{M}^{n+1}: \mathscr{M} \subseteq \mathscr{M}^{n+2}: \mathscr{M}^{2} \subseteq \cdots \subseteq \mathscr{M}^{n+k}: \mathscr{M}^{k} \subseteq \cdots
$$

This chain stabilizes at an ideal which was denoted by Ratliff and Rush as

$$
\widetilde{\mathscr{M}^{n}}:=\bigcup_{k \geq 1}\left(\mathscr{M}^{n+k}: \mathscr{M}^{k}\right)
$$

We have

$$
\tilde{\mathscr{M}}=\mathscr{M}
$$

and for every i, j

Further, if x is superficial for A,

$$
\widetilde{\mathscr{M}^{n+1}}: x=\widetilde{\mathscr{M}^{n}}
$$

for every $n \geq 0$.
We define for every $n \geq 0$

$$
\rho_{n}:=\lambda\left(\widetilde{\left(\mathscr{M}^{n+1}\right.} / J \widetilde{\mathscr{M}^{n}}\right) .
$$

For example, we have

$$
\rho_{0}=e-1
$$

We will make use of the fact that the usual Rees algebra $\mathscr{R}(. \mathscr{M})$ is a subalgebra of the Rees algebra associated to the Ratliff-Rush filtration, namely

$$
\bigoplus_{n \geq 0} \mathscr{M}^{n} T^{n} \subseteq \bigoplus_{n \geq 0} \widehat{\mathscr{M}^{n}} T^{n}
$$

This implies that $\bigoplus_{n \geq 0} \widetilde{\mathscr{M}^{n}} / \mathscr{M}^{n}$ has a canonical structure as a graded module over $\mathscr{R}(\mathscr{M})$.

It is thus natural to introduce a new set of numerical invariants, namely to let for every $n \geq 0$

$$
a_{n}:=\lambda\left(\widetilde{\mathscr{M}^{n}} / \mathscr{M}^{n}\right)
$$

In particular, we have

$$
a_{0}=a_{1}=0
$$

The following proposition clarifies the relationship between all these integers.
Proposition 2.1. Let (A, \mathcal{A}) be a two-dimensional Cohen-Macaulay local ring. For every $n \geq 1$, we have

$$
\rho_{n}+2 a_{n}=a_{n-1}+a_{n+1}+v_{n} .
$$

Proof. By letting $\mathscr{I}=\widetilde{\mathscr{M}^{n}}$ and $\mathscr{P}=\mathscr{M}^{n}$ in (4), we get for every $n \geq 1$,

$$
2 a_{n}=\lambda\left(\widetilde{\left(\mathscr{M}^{n}\right.}: J / \mathscr{M}^{n}: J\right)+\lambda\left(J \widetilde{\mathscr{M}^{n}} / J \mathscr{M}^{n}\right)
$$

Since

$$
\widetilde{\mathscr{M}^{n-1}} \subseteq \widetilde{\mathscr{M}^{n}}: J \subseteq \widetilde{\mathscr{M}^{n}}: x=\widetilde{\mathscr{M}^{n-1}} \supseteq \mathscr{M}^{n}: J \supseteq \mathscr{M}^{n-1}
$$

we get

$$
\lambda\left(\widetilde{J \mathscr{M}^{n}} / J \mathscr{M}^{n}\right)=2 a_{n}-a_{n-1}+\lambda\left(\mathscr{M}^{n}: J / \mathscr{M}^{n-1}\right)
$$

On the other hand, by the diagram

$$
\begin{array}{cc}
\widetilde{\mathscr{M}^{n+1}} \supset J \widetilde{\mathscr{M}^{n}} \\
\cup & \cup \\
\mathscr{M}^{n+1} \supset J \mathscr{M}^{n}
\end{array}
$$

we get

$$
\rho_{n}+\hat{\lambda}\left(\widetilde{\mathscr{M}^{n}} / J \mathscr{M}^{n}\right)=a_{n+1}+\lambda\left(\mathscr{M}^{n+1} / J \mathscr{M}^{n}\right)
$$

It follows that

$$
\rho_{n}+2 a_{n}-a_{n-1}+\lambda\left(\mathscr{M}^{n}: J / \mathscr{M}^{n-1}\right)=a_{n+1}+\lambda\left(\mathscr{M}^{n+1} / J \mathscr{M}^{n}\right),
$$

hence

$$
\rho_{n}+2 a_{n}=a_{n-1}+a_{n+1}+v_{n} .
$$

As a trivial application of this formula we get a way to write e_{1} and e_{2} as sums of non-negative integers.

It is clear that there exists an integer r such that $a_{n}=0$ for $n \geq r$. By the proposition this implies $\rho_{n}=v_{n}$ for every $n \geq r+1$ and further, by some easy computation, $\sum_{j-0}^{r} v_{j}=\sum_{j=0}^{r} \rho_{j}$ and $\sum_{j-1}^{r} j v_{j}=\sum_{j=1}^{r} j \rho_{j}$. By using (6) and (7) we get

$$
\begin{equation*}
e_{1}=\sum_{j \geq 0} \rho_{j} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{2}=\sum_{j \geq 1} j \rho_{j} \tag{9}
\end{equation*}
$$

These formulas have been proved in [5, Corollary 4.13] by using a deeper homological approach.

From the above proposition, since $a_{0}=a_{1}=0$, we get $\rho_{1}=a_{2}+v_{1}$ and by induction

$$
\begin{equation*}
a_{n}=\sum_{j=1}^{n-1}(n-j)\left(\rho_{j}-v_{j}\right), \quad \forall n \geq 2 \tag{10}
\end{equation*}
$$

In the following we need to control the behaviour of the integers ρ_{i} and v_{i} for $i=0, \ldots, \operatorname{indeg}(A) \quad 1$.

Proposition 2.2. Let (A, \mathscr{A}) be a two-dimensional Cohen-Macaulay local ring with $\operatorname{indeg}(A) \geq t$. For every $n=0, \ldots, t-1$ we have

- $\mathscr{M}^{n+1} \cap J=J \mathscr{M}^{n}$.
- $v_{n}=\lambda\left(\mathscr{M}^{n+1} / J \mathscr{M}^{n}\right)$.
- $\rho_{n}-v_{n}=\lambda\left(\widetilde{\mathscr{M}^{n+1}} / J \widetilde{\mathscr{M}^{n}}+\mathscr{M}^{n+1}\right)$.

Proof. Let $a x+b y \in \mathscr{M}^{n+1}$ with $a, b \in A$. Then $b y \in \mathscr{M}^{n+1}+(x)$ hence by (1) $b \in \mathscr{M}^{n}+$ (x). Thus, we can write $b=c x+d$ with $d \in \mathscr{M}^{n}$. Hence, we get $c y+a \in \mathscr{M}^{n+1}: x=\mathscr{M}^{n}$ and $a=-c y+e$ with $e \in \mathscr{M}^{n}$. It follows

$$
a x+b y=e x+d y \in J \mathscr{M}^{n}
$$

This proves the first assertion.
As for the second one, we remark that for every $j=0, \ldots, t-1$, we have by (1) $\mathscr{M}^{j+1}: x=\mathscr{M}^{j}$, so that for every $n=1, \ldots, t$

$$
\mathscr{M}^{n-1} \subseteq \mathscr{M}^{n}: J \subseteq \mathscr{M}^{n}: x=\mathscr{M}^{n-1}
$$

This implies

$$
\mathscr{M}^{n}: J=\mathscr{M}^{n-1}
$$

and $v_{n}=\lambda\left(\mathscr{M}^{n+1} / J \mathscr{M}^{n}\right)$.
Finally, we have

$$
\widetilde{J^{n}} \subseteq J \widetilde{\mathscr{M}^{n}}+\mathscr{M}^{n+1} \subseteq \widetilde{\mathscr{M}^{n-1}}
$$

hence

$$
\begin{aligned}
\lambda\left(\widetilde{\mathscr{M}^{n+1}} / J \widetilde{\mathscr{M}^{n}}+\mathscr{M}^{n+1}\right) & =\rho_{n}-\lambda\left(\widetilde{\mathscr{M}^{n}}+\mathscr{M}^{n+1} / J \widetilde{\mathscr{M}^{n}}\right) \\
& =\rho_{n}-\lambda\left(\widetilde{\mathscr{M}^{n+1}} / J \widetilde{\mathscr{M}^{n}} \cap \mathscr{M}^{n+1}\right)
\end{aligned}
$$

Since

$$
J \mathscr{M}^{n} \subseteq J \widetilde{\mathscr{M}^{n}} \cap \mathscr{M}^{n+1} \subseteq \mathscr{M}^{n+1} \cap J=J \mathscr{M}^{n}
$$

we get $J \mathscr{M}^{n}=\int \widetilde{\mathscr{M}^{n}} \cap \mathscr{M}^{n+1}$ and the conclusion follows.

3. The main theorem

In this section we give a proof of an extended version of a conjecture of J. Sally.
Theorem 3.1. Let (A, \mathcal{M}) be a d-dimensional Cohen-Macaulay local ring and t an integer, $t \geq 2$. The following conditions are equivalent:

- indeg $(A) \geq t$ and $e=\binom{h+t-1}{h}+1$.
- There exists an integer $s, t \leq s \leq\binom{ h+t-1}{h}$, such that

$$
P_{A}(z)=\frac{\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+z^{s}}{(1-z)^{d}}
$$

If either of the above conditions holds, then $\operatorname{depth}(G) \geq d-1$ and G is CohenMacaulay if and only if $s=t$.

We start by proving this in the one-dimensional case. First we need a couple of easy results which will be used also later.

Lemma 3.2. Let A be a ring, I and K ideals in A. If $t \geq 2$ is an integer such that $K \subseteq I^{t}$ and $\lambda\left(I^{t} / K\right)=1$, then either $I^{t+1}=I K$ or $I^{t}=K+\left(a^{t}\right)$ for some $a \in I$.

Proof. Let $I=\left(a_{1}, \ldots, a_{r}\right)$; if $a_{i} I^{t-1} \subseteq K$ for every $i=1, \ldots, r$, then $I^{t} \subseteq K$, a contradiction. Hence let $a:=a_{1}$ and $a I^{t-1} \not \subset K$. If $I^{t+1} \neq I K$, we claim that $a^{t} \notin K$, which gives the conclusion. To prove the claim we show that if with $2 \leq j \leq t$ we have
$a^{j} I^{t-j} \subseteq K$ then $a^{j-1} I^{t-j+1} \subseteq K$. Let us assume by contradiction that $a^{j-1} b \notin K$ for some $b \in I^{t-j+1}$; then $I^{t}=K+\left(a^{j-1} b\right)$ so that

$$
I^{t+1}=I K+a^{j-1} b I \subseteq I K+a I^{t}=I K+a K+\left(a^{j} b\right) \subseteq I K+a^{j} I^{t-j+1} \subseteq I K
$$

The conclusion follows.
Since in the following A is Cohen-Macaulay, we can find a maximal superficial sequence in A and we denote as usual by J the ideal it generates.

Proposition 3.3. Let (A, \mathscr{M}) be a local Cohen-Macaulay ring of dimension one or two such that indeg $(A) \geq t \geq 2$ and $e=\binom{h+t-1}{h}+1$. The following conditions hold:

1. $v_{t-1}=\lambda\left(\mathscr{M}^{t} / J \mathscr{M}^{t-1}\right)=1$.
2. $\mathscr{M}^{j+2} \subseteq J M^{j}$ for every $j \geq t-1$.
3. Either $\mathscr{M}^{t+1}=J \mathscr{M}^{t}$ or there exists $w \in \mathscr{M}$ such that $\mathscr{M}^{j+1}=J \mathscr{M}^{j}+\left(w^{j+1}\right)$ for every $j \geq t-1$.
4. $\hat{\lambda}\left(\mathscr{M}^{j+1} / J_{M^{j}}^{j}\right) \leq 1$ for every $j \geq t-1$.
5. $v_{j}=\lambda\left(\mathscr{M}^{j 11} / J_{M^{j}}^{j}\right)=e-\binom{h+j}{j}$ for every $j=0, \ldots, t-2$.

Proof. If $d=1$, since $\operatorname{indeg}(A) \geq t$ we have

$$
e-1=\binom{h+t-1}{h}=H_{A}(t-1) .
$$

Hence, by (3), we get

$$
e-1=H_{A}(t-1)=e-\lambda\left(\mathscr{M}^{t} / x \mathscr{M}^{t-1}\right),
$$

which implies

$$
\lambda\left(\mathscr{M}^{t} / x \mathscr{M}^{t-1}\right)=1
$$

as required.
If $d=2$, by (5) we have

$$
1=e-H_{A}(t-1)+H_{A}(t-2)=v_{t-1}=\lambda\left(\mathscr{M}^{t} / \mathcal{M}^{t-1}\right)-\lambda\left(\mathscr{M}^{t-1}: J / \mathscr{M}^{t-2}\right) .
$$

Since by (1) $\mathscr{M}^{t-1}: J \subseteq \mathscr{M}^{t-1}: x=\mathscr{M}^{t-2}$, we have

$$
\lambda\left(\mathscr{M}^{t} / J \mathscr{M}^{t-1}\right)=1
$$

This proves 1 .
We prove now 2. One has

$$
\mathscr{M}^{t} \supseteq \mathscr{M}^{t+1}+J \mathscr{M}^{t-1} \supseteq J \mathscr{M}^{t-1}
$$

and also, if $\mathscr{M}^{t}=\mathscr{M}^{t+1}+J \mathscr{M}^{t-1}$, by Nakayama $\mathscr{M}^{t}=J \mathscr{M}^{t-1}$ against 1 . Hence,

$$
\mathscr{M}^{t+1} \subseteq J \mathscr{M}^{t-1}
$$

and the second assertion follows by multiplication by \mathscr{A}.

We pass to the third assertion. Since $\lambda\left(\mathscr{M}^{t} / J \mathscr{M}^{t-1}\right)=1$, if $\mathscr{M}^{t+1} \neq J \mathscr{M}^{t}$, by the above lemma there exists an element $w \in \mathscr{M}$ such that

$$
\mathscr{M}^{t}=J \mathscr{M}^{t-1}+\left(w^{t}\right)
$$

But if $j \geq t$ and $\mathscr{M}^{j}=J_{\mathscr{M}} \mathscr{M}^{j-1}+\left(w^{j}\right)$, we get

$$
\begin{aligned}
\mathscr{M}^{j+1} & =J \mathscr{M}^{j}+w^{j} \mathscr{M} \subseteq J \mathscr{M}^{j}+w \mathscr{M}^{j} \\
& =J \mathscr{M}^{j}+w J \mathscr{M}^{j-1}+\left(w^{j+1}\right)=J \mathscr{M}^{j}+\left(w^{j+1}\right) \subseteq \mathscr{M}^{j+1}
\end{aligned}
$$

This proves 3 . Since $\mathscr{M}^{j+1} / J \mathcal{M}^{j}$ are k-vector spaces, the fourth assertion also follows.
We prove now the last assertion. If $d=1$, since $\operatorname{indeg}(A) \geq t$, the formula is a consequence of (3). If $d=2$, we need only to apply (5).

Proposition 3.4. Let (A, \mathcal{A}) be a Cohen-Macaulay local ring of dimension one and t an integer, $t \geq 2$. The following conditions are equivalent:

- indeg $(A) \geq t$ and $e=\binom{h+t-1}{h}+1$.
- There exists an integer s such that $t \leq s \leq\binom{ h+1-1}{h}$ and

$$
P_{A}(z)=\frac{\sum_{i=0}^{t-1}\binom{n+i-1}{i} z^{i}+z^{s}}{(1-z)}
$$

Proof. We need only to prove that the first condition implies the second. Since $\operatorname{indeg}(A) \geq t$, we have

$$
H_{A}(j)=\binom{h+j}{j}
$$

for every $j \leq t-1$. By (3) and 4 in the above proposition, we have for every $j \geq t$

$$
H_{A}(j)=e-\lambda\left(\mathscr{M}^{j+1} / x \mathscr{M}^{j}\right) \geq\binom{ h+t-1}{h}
$$

If we let s be the least integer such that $H_{A}(s)=e=\binom{h+t-1}{h}+1$, then $\mathscr{M}^{s+1}=x \cdot \mathscr{M}^{s}$, so that $\mathscr{M}^{r+1}=x \mathscr{M}^{r}$ and $H_{A}(r)=e$ for every $r \geq s$. This proves that

$$
P_{A}(z)=\frac{\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+z^{s}}{(1-z)}
$$

By the well-known theorem of Macaulay which characterizes the Hilbert functions of standard graded algebras, $H_{A}(e-1)=e$ so that $s \leq e-1=\binom{h+t-1}{h}$.

This gives the conclusion.
We come back now to the general case of the theorem. First of all we have $s=t$ if and only if the h-vector of A coincides with that of its artinian reduction. Hence, the last assertion on the Cohen-Macaulayness of G is clear.

Further if

$$
P_{A}(z)=\frac{\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+z^{s}}{(1-z)^{d}}
$$

then $e=\binom{h+t-1}{h}+1$ and $\operatorname{indeg}(A) \geq t$. The converse holds easily if $d=0$, while if $d=1$, it follows by the above proposition.

If $d \geq 2$, we let

$$
B:=A /\left(x_{1}, \ldots, x_{d-2}\right)
$$

and

$$
C:=A /\left(x_{1}, \ldots, x_{d-1}\right),
$$

where x_{1}, \ldots, x_{d-1} is a superficial sequence in A. We have $\operatorname{dim}(C)=1, \operatorname{dim}(B)=2$,

$$
\binom{h+t-1}{h}+1=e(A)=e(B)=e(C)
$$

and by (2)

$$
\operatorname{indeg}(C) \geq \operatorname{indeg}(B) \geq \operatorname{indeg}(A) \geq t .
$$

Hence, by Proposition 3.4,

$$
P_{C}(z)=\frac{\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+z^{s}}{(1-z)}
$$

If we can prove that the depth of the associated graded ring of B is positive, then, by using Sally's machine, we get depth(G) $\geq 1+d-2=d-1$. This implies

$$
P_{A}(z)=\frac{P_{C}(z)}{(1-z)^{d-1}}-\frac{\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+z^{s}}{(1-z)^{d}}
$$

and the conclusion of the theorem follows.
Henceforth, we may assume $\operatorname{dim}(A)=2$ and, by the above remark, we need to prove that $\operatorname{depth}(G) \geq 1$. As before, we let $J=(x, y)$ be the ideal generated by a superficial sequence and $R:=A / x A$.

Since R is now a one-dimensional Cohen-Macaulay local ring with $e=\binom{h+t-1}{h}+1$ and $\operatorname{indeg}(R) \geq t$, by Proposition 3.4 and (3), we have

$$
\begin{aligned}
e_{1}(R) & =\sum_{j=0}^{s-1} \sigma_{j}=\sum_{j=0}^{t-1}\left(e-H_{A}(j)\right)+\sum_{j=t}^{s-1}\left(e-H_{A}(j)\right) \\
& =t e-\sum_{j=0}^{t-1}\binom{h+j}{j}+s-t=t e+s-t-\binom{h+t}{h+1}
\end{aligned}
$$

Further, since $d=2$,

$$
e_{1}(A)=e_{1}(R)=t e+s-t-\binom{h+t}{h+1}
$$

Proposition 3.5. With the above notation the following conditions hold:

- $\lambda\left(\mathscr{M}^{j+1} / J \mathscr{M}^{j}\right)-1$ for every $j-t-1, \ldots, s-1$.
- $\mathscr{M}^{j+1}: x=\mathscr{M}^{j}$ for every $j=0, \ldots, s-1$.
- $v_{j}=1$ for every $j=t-1, \ldots, s-1$.
- $\operatorname{depth}(G)>0 \Leftrightarrow \mathscr{M}^{s+1}=J \mathscr{M}^{s}$.

Proof. From the proof of Proposition 3.4, we have

$$
\lambda\left((\mathscr{M} / x)^{j+1} / y(\mathscr{M} / x)^{j}\right)= \begin{cases}1 & \text { if } t-1 \leq j \leq s-1, \\ 0 & \text { if } j \geq s .\end{cases}
$$

It is easy to see and proved in [9] that for every $j \geq 0$ there is an exact sequence

$$
0 \rightarrow \mathscr{M}^{j}: x / \mathscr{M}^{j}: J \xrightarrow{y} \mathscr{M}^{j+1}: x / \mathscr{M}^{j} \xrightarrow{x} \mathscr{M}^{j+1} / J \mathscr{M}^{j} \rightarrow(\mathscr{M} / x)^{j+1} / y(\mathscr{M} / x)^{j} \rightarrow 0 .
$$

Thus, if $t-1 \leq j \leq s-1$, since $\lambda\left(\cdot \mathscr{M}^{j+1} / J \mathscr{M}^{j}\right) \leq 1$, the first assertion follows from the above exact sequence.

The second property follows by (1) if $j \leq t-1$. Let $j \geq t$; since

$$
\mathscr{M}^{j}: x \supseteq \mathscr{M}^{j}: J \supseteq \mathscr{M}^{j-1},
$$

by induction on j the first module on the left in the above exact sequence is 0 , hence the second one is zero too since the last two modules share the same length.

The third assertion is now a trivial consequence of the first two.
Finally if $\operatorname{depth}(G)>0$, then x^{*} is a regular element in G, hence $\mathscr{M}^{s+1}: x=\mathscr{M}^{s}$. Since if $j=s$ the last module in the above exact sequence is zero, we get $\mathscr{M}^{s+1}=J \mathscr{M}^{s}$.

Conversely, let $\mathscr{M}^{s+1}=J \mathscr{M}^{s}$. Since

$$
\mathscr{M}^{s-1}=\mathscr{M}^{s}: x \supseteq \mathscr{M}^{s}: J \supseteq \mathscr{M}^{s-1}
$$

we get by the above exact sequence $\mathscr{M}^{s+1}: x=\mathscr{M}^{s}$. Since $\mathscr{M}^{j+1}=J \mathscr{M}^{j}$ for every $j \geq s$, we can go on and finally prove that

$$
\mathscr{M}^{j+1}: x=\mathscr{M}^{j}
$$

for every $j \geq s$. Hence, by the second assertion, $\mathscr{M}^{j+1}: x=\mathscr{M}^{j}$ for every $j \geq 0$ and this implies $\operatorname{depth}(G)>0$, as desired.

We will need the following result which has been proved in [9] and which is the crucial point in the proof of the theorem. We do not insert here a proof; we only remark that, as we said before, $\bigoplus\left(\widetilde{\mathscr{M}^{n}} / \mathscr{M}^{n}\right)$ is a graded module over the Rees algebra $\mathscr{R}(\mathscr{M})$. By using this and the standard trick as in the classical Cayley-Hamilton theorem, one gets the conclusion.

Proposition 3.6. Let (A, \mathscr{M}) be a local ring, $p \geq 2$ an integer and $J \subseteq \mathscr{M}$ an ideal of A. For every integer $n=2, \ldots, p$ suppose we are given ideals

$$
I_{n}=\left(a_{1 n}, \ldots, a_{v_{n} n}\right) \subseteq \widetilde{\mathscr{M}^{n}}
$$

Let w be an element in M such that

$$
\begin{aligned}
& w I_{2} \subseteq J I_{2}+I_{3}+\mathscr{M}^{3}, \\
& w I_{3} \subseteq J^{2} I_{2}+J I_{3}+I_{4}+\mathscr{M}^{4}, \\
& \vdots \\
& w I_{p-1} \subseteq J^{p-2} I_{2}+J^{p-3} I_{3}+\cdots+J I_{p-1}+I_{p}+\mathscr{M}^{p}, \\
& w I_{p} \subseteq J^{p-1} I_{2}+J^{p-2} I_{3}+\cdots+J I_{p}+\mathscr{M}^{p+1} .
\end{aligned}
$$

If we let $v:=\sum_{i=2}^{p} v_{i}$, then there exists an element $\sigma \in J_{M^{v-1}}$ such that for every $n=2, \ldots, p$ and $i=1, \ldots, v_{n}$

$$
w^{v} a_{i n} \equiv \sigma a_{i n} \bmod \mathscr{M}^{v+n}
$$

We can finish now the proof of the theorem.

Theorem 3.7. Let (A, \mathscr{M}) be a Cohen-Macaulay local ring of dimension two such that $\operatorname{indeg}(A) \geq t$ and $e=\binom{h+t-1}{n}+1$. Then

$$
\operatorname{depth}(G) \geq 1
$$

Proof. For every $n \geq 2$ we have

$$
\widetilde{\mathscr{M}^{n}} \supseteq J \cdot \widetilde{M^{n-1}}+\mathscr{M}^{n} \supseteq J \widetilde{M^{n-1}}
$$

and

$$
\hat{\lambda}\left(\widetilde{\mathscr{M}^{n}} / J \widetilde{\mathscr{M}^{n-1}}\right)=\rho_{n-1} .
$$

Hence,

$$
\lambda\left(\widehat{\mathscr{M}^{n}} / J \cdot \widetilde{M^{n-1}}+\mathscr{M}^{n}\right) \leq \rho_{n-1}
$$

and equality holds if and only if

$$
\mathscr{A}^{n} \subseteq J \widetilde{\mathscr{M}^{n-1}}
$$

Further we can find elements $a_{1 n}, \ldots, a_{v_{n} n} \in \overline{\mathscr{M}^{n}}$ such that their residue classes modulo $J . \widehat{M^{n-1}}+\mathscr{M}^{n}$ form a minimal system of generators of the module $\widetilde{\mathscr{M}^{n}} / J, \widehat{M^{n-1}}+\mathscr{M}^{n}$. It is clear that we have

$$
v_{n} \leq \lambda\left(\widetilde{\mathscr{M}^{n}} / J \widetilde{\mathscr{M}^{n-1}}+\mathscr{M}^{n}\right) \leq \rho_{n-1}
$$

and if $\mathscr{M}^{n} \nsubseteq J \cdot \widetilde{\mathscr{M}^{n-1}}$, then

$$
\begin{equation*}
v_{n}<\rho_{n-1} . \tag{11}
\end{equation*}
$$

If $n \leq t$, by Proposition 2.2 , we can be more precise, namely

$$
v_{n} \leq \rho_{n-1}-v_{n-1} .
$$

If we let

$$
I_{n}:=\left(a_{1 n}, \ldots, a_{v_{n} n}\right),
$$

then $I_{n} \subseteq \widetilde{\mathscr{M}^{n}}$ and

$$
\widetilde{\mathscr{M}^{n}}=J \widetilde{M^{n-1}}+\mathscr{M}^{n}+I_{n} .
$$

Since

$$
\widetilde{\mathscr{M}^{2}}=\widetilde{J}+\mathscr{M}^{2}+I_{2}=\mathscr{M}^{2}+I_{2},
$$

we get

$$
\widetilde{\mathscr{M}^{3}}=\widetilde{J \mathscr{M}^{2}}+\mathscr{M}^{3}+I_{3}=J \mathscr{M}^{2}+J I_{2}+\mathscr{M}^{3}+I_{3}=J I_{2}+I_{3}+\mathscr{M}^{3}
$$

Going on in this way, we obtain for every $r \geq 2$

$$
\begin{equation*}
\widehat{\mathscr{M}^{r}}=\sum_{j=2}^{r} J^{r-j} I_{j}+\mathscr{M}^{r} \tag{12}
\end{equation*}
$$

Now we recall that by Proposition 2.2 and the last assertion in Proposition 3.3, for every $j \leq t-2$, we have

$$
\rho_{j} \geq v_{j}=e-\binom{h+j}{j}
$$

hence

$$
\begin{aligned}
e t & -\binom{h+t}{h+1}+s-t=e_{1}=\sum_{j \geq 0} \rho_{j}=\sum_{j=0}^{t-2} \rho_{j}+\sum_{j \geq t-1} \rho_{j} \\
& \geq \sum_{j-0}^{t-2}\left(e-\binom{h+j}{j}\right)+\sum_{j \geq t-1} \rho_{j}=(t-1) e-\binom{h+t-1}{t-2}+\sum_{j \geq t-1} \rho_{j} \\
& =(t-1) e-\binom{h+t}{h+1}+\binom{h+t-1}{h}+\sum_{j \geq t-1} \rho_{j} \\
& =e t-\binom{h+t}{h+1}-1+\sum_{j \geq t-1} \rho_{j}
\end{aligned}
$$

It follows that

$$
\sum_{j \geq t-1} \rho_{j} \leq s-t+1
$$

We distinguish two cases:
(i) $\rho_{t-1}=\cdots=\rho_{s-1}=1$. With this assumption the above inequality turns out to be an equality and this implies

$$
\rho_{j}=v_{j}
$$

for every $j \leq t-2$ and

$$
\rho_{s}=0 .
$$

Further by Proposition 3.5, we have $1=v_{j}=\rho_{j}$ for $t-1 \leq j \leq s-1$. By (10), this gives $a_{n}=0$ for every $n \leq s$, hence

$$
\mathscr{M}^{s+1} \subseteq \widetilde{\mathscr{M}^{s+1}}=J \widetilde{\mathscr{M}^{s}}=J \mathscr{M}^{s} \subseteq \mathscr{M}^{s+1}
$$

which implies

$$
\mathscr{M}^{s+1}=J_{M^{s}}
$$

so that, by Proposition $3.5, \operatorname{depth}(G) \geq 1$.
(ii) There exists an integer j such that $t-1 \leq j \leq s-1$ and $\rho_{j} \neq 1$. In this case, since by Proposition 2.2 and $3.3 \rho_{t-1} \geq v_{t-1}=1$, the condition $\sum_{j \geq t-1} \rho_{j} \leq s-t+1$ implies $s \geq t+1$ and $\rho_{j}=0$ for some $t \leq j \leq s-1$. Thus, we may assume

$$
\rho_{t-1}, \ldots, \rho_{p-1} \neq 0, \quad \rho_{p}=0
$$

with $t \leq p \leq s-1$.
We also let k be the least integer n such that $\mathscr{M}^{n+1} \subseteq J \widetilde{\mathscr{M}^{n}}$.
We remark that

$$
\mathscr{M}^{t} \nsubseteq J \widetilde{M^{t-1}}
$$

otherwise by Proposition $2.2, \mathscr{M}^{t} \subseteq J \cap \mathscr{M}^{t}=J \mathscr{M}^{t-1}$, which contradicts the equality $\lambda\left(\mathscr{M}^{t} / J \mathscr{M}^{t-1}\right)=1$.

Further, since $\rho_{p}=0, \mathscr{M}^{p+1} \subseteq \widetilde{\mathscr{M}^{p+1}}=\sqrt{\mathscr{M}^{p}}$, hence we have

$$
t \leq k<p \leq s-1 .
$$

By the true definition of k and (11), we have for every $j=t, \ldots, k$

$$
\begin{equation*}
v_{j}<\rho_{j-1} \tag{13}
\end{equation*}
$$

and for every $j \leq t-1$

$$
v_{j} \leq \rho_{j-1}-v_{j-1}
$$

We refer now to Proposition 3.3. If $\mathscr{A}^{t+1}-J \mathscr{M}^{t}$, then $\mathscr{M}^{s+1}=J \mathscr{M}^{s}$, and $\operatorname{depth}(G)>0$. Otherwise we can find an element $w \in \mathscr{M}$ such that $\mathscr{M}^{j+1}=J \mathscr{M}^{j}+$ (w^{j+1}) for every $j \geq t-1$. By using (12), we get for every $n=2, \ldots, p-1$

$$
w I_{n} \subseteq \widetilde{\mathscr{M}^{n+1}}=\sum_{j=2}^{n+1} J^{n+1-j} I_{j}+\mathscr{M}^{n+1}
$$

and

$$
w I_{p} \subseteq \widetilde{\mathscr{M}^{p+1}}=\widetilde{J \mathscr{M}^{p}}=\sum_{j=2}^{p} J^{p+1-j} I_{j}+J \mathscr{M}^{p} \subseteq \sum_{j=2}^{p} J^{p+1-j} I_{j}+\mathscr{M}^{p+1}
$$

By applying the above proposition with $v=\sum_{i=2}^{p} v_{i}$, we can find an element $\sigma \in$ $J \mathscr{M}^{v-1}$, such that for every $i=1, \ldots, v_{n}$

$$
\begin{equation*}
w^{v} a_{i n} \equiv \sigma a_{i n} \bmod \mathscr{M}^{\nu+n} . \tag{14}
\end{equation*}
$$

On the other hand, since $\mathscr{M}^{k+1} \subseteq \widetilde{\mathscr{M}^{k}}=\sum_{j=2}^{k} J^{k+1-j} I_{j}+J \mathscr{M}^{k}$, we can write

$$
w^{k+1}=\sum_{j=2}^{k} \sum_{i=1}^{v_{j}} m_{i j} a_{i j}+b
$$

where $m_{i j} \in J^{k+1-j}, b \in J \mathscr{M}^{k}$. Using this and (14) we get

$$
w^{v+k+1}=w^{k+1} w^{v}=\sum_{j=2}^{k} \sum_{i=1}^{v_{j}} m_{i j} a_{i j} w^{v}+b w^{v}=\sum_{j=2}^{k} \sum_{i=1}^{v_{j}} m_{i j}\left(\sigma a_{i j}+c\right)+b w^{v},
$$

where $c \in \mathscr{M}^{\nu+j}$. Since $j \leq k, m_{i j} c \in J^{k+1-j} \mathscr{M}^{\nu+j} \subseteq J \mathscr{M}^{\nu+k}$ and $b w^{v} \in J \mathscr{M}^{\nu+k}$, so that

$$
w^{v+k+1}=\sigma \sum_{j=2}^{k} \sum_{i=1}^{v_{j}} m_{i j} a_{i j}+q=\sigma\left(w^{k+1}-b\right)+q
$$

with $q \in J \mathscr{M}^{\nu+k}$. Since $\sigma \in J \mathscr{M}^{\nu-1}$ and $w^{k+1}-b \in \mathscr{M}^{k+1}$, we get

$$
w^{v+k+1} \in J \mathscr{A}^{v+k}
$$

which, by Proposition 3.3, implies

$$
\mathscr{M}^{v+k+1}=J \mathscr{M}^{v+k} .
$$

We finally remark that by (13) and (11)

$$
\begin{aligned}
v+k & =\sum_{i=2}^{p} v_{i}+k \leq \sum_{i=2}^{t-1}\left(\rho_{i-1}-v_{i-1}\right)+\sum_{i=t}^{k}\left(\rho_{i-1}-1\right)+\sum_{i=k+1}^{p} \rho_{i-1}+k \\
& \leq \sum_{i \geq 1} \rho_{i}-(k-t+1)+k-\sum_{i=1}^{t-2} v_{i}=e_{1}-\rho_{0}+t-1-\sum_{i=1}^{t-2}\left(e-\binom{h+i}{i}\right) \\
& =e t-\binom{h+t}{h+1}+s-t-e+1+t-1-(t-2) e+\sum_{i=1}^{t-2}\binom{h+i}{i} \\
& =e-\binom{h+t}{h+1}+s+\binom{h+t-1}{t-2}-1=s .
\end{aligned}
$$

Hence

$$
\mathscr{M}^{s+1}=J \mathscr{M}^{s}
$$

and the conclusion follows by Proposition 3.5.

We end the paper by giving suitable examples of Cohen-Macaulay local rings A such that $e=\binom{h+t-1}{h}+1$ and $\operatorname{indeg}(A) \geq t$.

Let

$$
\begin{aligned}
& A=k\left[\left[t^{7}, t^{8}+t^{9}, t^{12}\right]\right], \\
& B=k\left[\left[t^{7}, t^{8}+t^{9}, t^{13}\right]\right], \\
& C=k\left[\left[t^{11}, t^{12}+t^{13}, t^{18}, t^{19}\right]\right] .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& P_{A}(z)=\frac{1+2 z+3 z^{2}+z^{4}}{1-z} \\
& P_{B}(z)=\frac{1+2 z+3 z^{2}+z^{5}}{1-z} \\
& P_{C}(z)=\frac{1+3 z+6 z^{2}+z^{6}}{1-z}
\end{aligned}
$$

In all these examples $t=3$ and G is not Cohen-Macaulay, so that A has maximal Cohen-Macaulay type.

In the following class of examples A has maximal Cohen-Macaulay type and G is Cohen-Macaulay.

Let $t \geq 3$ and $I \subset R:=k[[X, Y, Z, T]]$ be the ideal generated by the maximal minors of the following $t \times(t+1)$ matrix, where if $t=3$ we only consider the first, the second and the last row:

$$
\left(\begin{array}{ccccccccccc}
X & Z & 0 & 0 & . & . & . & . & . & . & 0 \\
Y & X+Z^{2} & T & 0 & . & . & . & . & . & . & 0 \\
0 & 0 & Y & Z & 0 & . & . & . & . & . & 0 \\
0 & 0 & 0 & Y & Z & 0 & . & . & . & . & 0 \\
\vdots & \vdots \\
0 & 0 & . & . & . & . & . & 0 & Y & Z & 0 \\
0 & 0 & . & . & . & . & . & . & 0 & T^{2} & Z
\end{array}\right) .
$$

If we let $A=R / I$ then $\operatorname{indeg}(A)=t, h=2$ and $e=\binom{t+1}{2}+1$.
The above computations have been carried over with the computer algebra program CoCoA.

References

[1] S. Abhyankar, Local rings of high embedding dimension, Amer. J. Math. 89 (1967) 1073-1077.
[2] M.P. Cavaliere, M.E. Rossi, G. Valla, On short graded algebras, in: Proc. Commutative Algebra, Salvador, 1988, Lecture Notes in Math., vol. 1430, Springer, Berlin, 1990, 21-31.
[3] J. Elias, M.E. Rossi, G. Valla, On the coefficients of the Hilbert polynomial, J. Pure Appl. Algebra 108 (1996) 35-60.
[4] J. Elias, G. Valla, Rigid Hilbert functions, J. Pure Appl. Algebra 71 (1991) 19-41.
[5] S. Huckaba, T. Marley, Hilbert coefficients and the depths of associated graded rings, J. London Math. Soc., to appear.
[6] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987) 293-318.
[7] L.J. Ratliff, D. Rush, Two notes on reductions of ideals, Indiana Univ. Math. J. 27 (1978) 929-934.
[8] M.E. Rossi, G. Valla, Multiplicity and t-isomultiple ideals, Nagoya Math. J. 110 (1988) 81-111.
[9] M.E. Rossi, G. Valla, A conjecture of J. Sally, Comm. Algebra 24 (1996) 4249-4261.
[10] J. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ. 17 (1977) 19-21.
[11] J. Sally, Super regular sequences, Pacific. J. Math. 84 (1979) 475-481.
[12] J. Sally, Cohen-Macaulay local ring of embedding dimension $e+d-2$, J. Algebra 83 (1983) 325-333.
[13] B. Singh, Effect of a permissible blowing-up on the local Hilbert function, Inv. Math. 26 (1974) 201-212.

[^0]: * Corresponding author. E-mail: rossim@dima.unige.it.

