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Abstract 

In this paper we prove an extended version of a conjecture of J. Sally. Let (A,./&) be a 
Cohen-Macaulay local ring of dimension d, multiplicity e and embedding codimension h. If the 

initial degree of A is bigger than or equal to t and e = (“‘k-l) + 1, we prove that the depth of the 

associated graded ring of A is at least d - I and the h-vector of A has no negative components. 
The conjecture of Sally was dealing with the case t = 2 and was proved by these authors in a 
previous paper. Some new formulas relating certain numerical characters of a two-dimensional 
Cohen-Macaulay local ring are also given. @ 1997 Published by Elsevier Science B.V. 

1991 Math. Subj. Class.: 14M05, 13D99 

0. Introduction 

Let (A, A!) be a local Cohen-Macaulay ring of dimension d, embedding dimension 

N and multiplicity e. By a classical result of Abhyankar (see [l]), we have e > 

N - d + 1 and if equality holds, the structure of the associated graded ring G := 

$n>O(.,fln/&P+‘) is well understood and G itself is Cohen-Macaulay (see [lo]). In 

the case e = N-d+2, J. Sally proved in [12] that G is not necessarily Cohen-Macaulay, 

the exceptions being the Cohen-Macaulay local rings of maximal type e - 2. The main 

open question there was about the possible depths of G and in fact Sally made the 

conjecture that depth(G) 2 d - 1 and gave strong evidence for this to be true. 

In [9] we proved this conjecture and also described all the possible Hilbert functions 

ofA. 
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But very often we know that a given algebraic variety does not lie on a quadric or 

more generally does not lie on any hypersurface of degree less than a certain integer t. 

In this case the bound given by Abhyankar is no more sharp, and in [4] the right 

bound, involving the initial degree t, is given and the extremal case is studied. It turns 

out that if we let h := N - d, then e > (h’f-‘) and, if equality holds, A has maximal 

Hilbert function and G is Cohen-Macaulay. If instead we have e = (h’LP’) + 1, then 

G is not necessarily Cohen-Macaulay (see the examples at the end of the paper), 

the possible exceptions being again the Cohen-Macaulay local rings of maximal type 

(kf:;‘) (see [8, Theorem 3.101). 

In Section 3 we prove that, also in this more general setting, depth(G) > d - 1 and 

describe all the possible Hilbert functions of A. This gives a complete solution to the 

extended version of Sally’s conjecture we refer in the title. We discussed this problem 

in [2] where the guess was formulated. 

To us, one of the more interesting aspects of our proof concerns what our methods 

show about the relationship between certain numerical characters of a Cohen-Macaulay 

local ring of dimension two, a topic to which Section 2 is devoted. 

1. Preliminaries 

Let (A, A) be a local ring of dimension d, multiplicity e and residue field k = A/J%?. 

The Hilbert function of A is by definition the Hilbert function of the associated graded 

ring of A which is the homogeneous k-algebra 

G := grA(A) = &4’n/~n+1. 
II>0 

Hence, 

HA(n) =Ho(n) = dimk(&“/&“+‘). 

The generating function of this numerical function is the power series 

PA(z) = c HA(n)z” 
IlEN 

which is called the Hilbert Series of A. This series is rational and there exists a 

polynomial h(z) E Z[z] such that 

h(z) 
PA(z)= (1 _z)d’ 

where h(l)=e> 1. 

The polynomial h(z) = ho + hlz + . . . + h,z’ is called the h-polynomial of A and the 

vector (ho, hl, . . . , h,) the h-vector of A. 

For every i 2 0, we let 

ei :- 
h(‘)( 1) 

i! 
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and 

X+i 

( > 

._ (X+i)...(X+ 1) 

.- 
i i! 

Then 

en = e 

and the polynomial 

has rational coefficients and degree d - 1; further for every n % 0 

/h(n) =fh(n). 

The polynomial PA(X) is called the Hilbert polynomial of A. 

The embedding codimension of A is the integer 

h := embcod(A) := HA( 1) - d. 

It is clear that h = hi, the coefficient of z in the h-polynomial of A. Further embcod(A ) 

= 0 if and only if A is a regular local ring. 

We denote by indeg(A) the initial degree of A which is the integer defined as 

indeg(A)=min{j:&(j) < (“(“l’-‘)}. 

If a is an element in A, a $_4Y2, then HA( 1) = H&&l) + 1 and we may write 

&=(a,,... , a,,) where a = u1 and n = HA( 1). Then the associated graded ring of A 

can be presented as 

G = k[Xi , . . . ,&l/4 

where I is the homogeneous ideal generated by the forms F of degree i such that 

F(q,...,a,)u%“+‘. 

If indeg(A) > t, then Zj = 0 for every j < t - 1 and we claim that 

./M l+’ :a=A’V’i=O...,t - 1. (1) 

Since A2 : a = ~2, this is clear if t < 2; if t > 3, we may assume, by contradiction, that 
.&i : a = &i-l and Ai+l : a # Jt” for some i, 2 5 i < t- 1. Let b @ .k” be an element 

such that abEA’+‘. Then bEM’-’ so that b=F(q,...,a,) where FE~[X~,...,X,,] 

is a form of degree i - 1. It follows that 

@al,. ..,a,)=ab E Jkfi+‘, 

hence 0 #Xl F E Ii, which is a contradiction. This proves the claim. 
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Now we recall a classical result of Singh [13] which asserts that for every a E &’ 

and for every i > 0 

j=O 

where i(M) denotes the length of 

Using this equality and (1 ), we 

an A-module M. 

easily get that for every a E 4, a # &12 

indeg(A/uA) > indeg(A). (2) 

We recall that if A has positive dimension, an element x in &Z? is called superficial 

for A if there exists an integer c > 0 such that 

for every n > c. 

It is easy to see that a superficial element x is not in ,M2 and that x is superficial 

for A if and only if x* := X E JY/JEZ?~ does not belong to the relevant associated primes 

of G. Hence, if the residue field is infinite, superficial elements always exist. 

Further if A has positive depth, every superficial element is also a regular element 

in A. 

A sequence xi,. . . , xr in the local ring (A, A) is called a superficial sequence for A, 

if xl is superficial for A and xi is superficial for A/(x,, . . . ,xi_l) for 2 I i 5 r. 

By passing, if needed, to the local ring A[X](~K,~) we may assume that the residue 

field is infinite. Hence if depth(A) 2 r, every superficial sequence xi,. . . ,xr is also a 

regular sequence in A. Such a sequence has the right properties for a good behaviour 

of the numerical invariants under reduction modulo the ideal it generates. 

In particular if J = (xl,. . . , IX,.), and (B, ~4’“) = (A/J, &L&‘/J), then B is a local ring with 

dim(B) = d - r, 

If depth(A) > r, then depth(B) = depth(A) - r, 

embcod(A) = embcod(B), 

indeg(B) L indeg(A), 

ei(A) = ei(B) for i = 0,. . , d - r. 

The following relevant properties of superficial sequences will also be needed. 

depth(grA(A)) > r H XT,. . . ,xF is a regular sequence in grA(A) ej P?(z) = 

P~(z)/(l -z)‘@&jflJ=J&Tj-’ for everyj 2 1. 

depth(grd(A)) L r + 1 # depth(gr,v(B)) L 1. 

This last property is the so-called Sully’s machine which is a very important trick 

to reduce dimension in questions relating to depth properties of gc&A). Sally proved 

this result in the case r = d - 1 in [l 11; a complete and nice proof of the general case 

can be found in Lemma 2.2 of [5]. 
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2. Two dimensional Cohen-Macaulay local rings 

In this section we collect some results which relate certain numerical invariants of 

a Cohen-Macaulay local ring of dimension two. 

We first recall that in the case A is a one-dimensional Cohen-Macaulay local ring 

and x a superficial element, from the diagram 

A > h?j > cki’j+’ 

u u U 

XA > x.Lj = x&j 

we get 

HA(j) = 2(AJ/xJYi) - A(~2Yj+‘/xAj). 

But ,i(A/xA) = e and A/,h?j P xA/xdli so that for every j > 0 

HA(~) = e - %(Aj+‘/xAj)_ (3) 

If we let cr, := A(A’j+‘/xAj), we have rro =e - &(O)=e - 1, and ifs is the degree 

of the h-polynomial of A, then Gj = 0 for every j > s and 

PA(z) = 
1 + (CJO - 01 )z + (a, - Q)Z2 + ‘. . + (cTs_2 - 4F_-)zs-- + @s__lz’ 

1 -z 

This clearly implies 

s-l 

el = x9 
j=O 

and 

s- I 

e2 = c&J. 
‘=I 

Similar formulas can be found in the two-dimensional case. We need new numerical 

invariants which have been introduced by Huneke in [6]. Since we are assuming A to 

be Cohen-Macaulay, we can find in A! a superficial sequence x, y and we let J = (x, y) 

be the ideal they generate. The main point in Huneke’s result is the fact that if .B 2 9 

are ideals in A then we have a short exact sequence: 

0 + .a : J/3’ : J + (c9/P)2 + JYJJP --+ 0. (4) 

For every integer n > 1 we let 

zi .- ;I(.BV’+‘/J&?~) - d(dZ” : J/c@-‘) II .- 

and for n = 0 we let 

u0 :=e- 1. 
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By using (4), Huneke proved that for every n 2 1 

I&(n)-&(n- 1)-e-u,. (5) 

Let s be the degree of the h-polynomial of A; since the h-polynomial of a two- 

dimensional local ring is the second difference of its Hilbert function, we must have 

t.j=Oforeveryj>sand 

PA(z) = 
1 + (uc - q)z + (u1 - zQ)z2 + ‘. . + (?I_* - us_+-’ + u,_,z” 

(1 -2)X 

This gives 

s-1 

el = 
c vj 
j=O 

and 

s--I ” 
e2 = c jVj 

j=l 

(6) 

(7) 

Unfortunately the integers q can be negative; however, the following construction 

due to Ratliff and Rush (see [7]), gives a way to overcome the problem. 

Let (A,A’) be a Cohen-Macaulay local ring. For every n we consider the chain of 

ideals 

This chain stabilizes at an ideal which was denoted by Ratliff and Rush as 

Z := U(A”fk : Afk), 

k>l 

We have 

A&A, 

and for every i, j 

Further, if x is superficial for A, 

d&l -5 *+’ :x=.)& 

for every n > 0. 

We define for every n > 0 

pn := n~LF/.Lz,. 
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For example, we have 

We will make use of the fact that the usual Rees algebra %(A’) is a subalgebra of 

the Rees algebra associated to the Ratliff-Rush filtration, namely 

@.APP c C&2+. 

II)0 II>0 

This implies that $n,O Z/J.&” has a canonical structure as a graded module over - 
.9(&q. 

It is thus natural to introduce a new set of numerical invariants, namely to let for 

every n > 0 

a, := I,(Z/&“). 

In particular, we have 

ao-al =O. 

The following proposition clarifies the relationship between all these integers. 

Proposition 2.1. Let (A,&) be a two-dimensional Cohen-Macaulay local ring. For 

every n 2 1, we have 

Pn+2an=a,-1 +a,+1 +v,. 

Proof. By letting 9 = z and 9 = A’” in (4), we get for every n > 1, 

2a, = A(5 : J/d” : J) + 1(Jz/JA”). 

Since 

we get 

%(Jz/Jd”) = 2a, - a,,_1 + ,I(&” : J/M”-‘). 

On the other hand, by the diagram 

U U 

A? ‘+’ > JA”, 

we get 

pn + i(Jz/Jd”) = a,,+1 + ,(&*+‘/J&“). 



300 M.E. Rossi, G. VallalJournal of Pure and Applied Algebra 122 (1997) 293-311 

It follows that 

PII + 24 - G-1 + n(dn : J/&l”-‘) =a,+l + L(&“+‘/J&‘“), 

hence 

Pn + 24 = a,_] + a,+l + v,. 0 

As a trivial application of this formula we get a way to write er and e2 as sums of 

non-negative integers. 

It is clear that there exists an integer Y such that a,, = 0 for n > Y. By the proposi- 

tion this implies pn = v, for every n 2 Y + 1 and further, by some easy computation, 

~~=O~j= cJ,apj and ~~=ljvj= c,‘_,jpj. By using (6) and (7) we get 

el = c pi 
ilo 

and 

e2 = c jPj. 

(8) 

(9) 

These formulas have been proved in [5, Corollary 4.131 by using a deeper homo- 

logical approach. 

From the above proposition, since a0 = al = 0, we get pi = a2 + VI and by induction 

n-l 

a, = C(n - j)(Pj - Vj), t7’?l > 2. (10) 
j=l 

In the following we need to control the behaviour of the integers pi and Vi for 

i = 0,. . , indeg(A) - 1. 

Proposition 2.2. Let (A,A) be a two-dimensional Cohen-Macaulay local ring with 

indeg(A) > t. For every n = 0,. , t - 1 we have 

l u&l”+’ nJ=J&l”. 

l v, = l.(k”+‘/Js&“). 

Proof. Let ax+by E Jn+’ witha,bEA.ThenbyEJ’+‘+(x)henceby(l)bEJP’+ 

(n).Thus,wecanwriteb=cx+dwithd~~”.Hence,wegetcy+a~~~“:x=~~ 

and a = -cy + e with e E A”. It follows 

ax+by=ex+dyEJk”. 

This proves the first assertion. 

As for the second one, we remark that for every j = 0,. . . , t - 1, we have by (1) 

A-i+* :x=&j, so that for every n= l,...,t 

A/“-‘c&‘:JC&‘:x=_&“-‘. _ 
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This implies 

and v, = A(A”+‘/JA”). 

Finally, we have 

Jz 5 J.z + A”+’ &F; 

hence 

Since 

J_&” C Jz n A”+’ C An+’ n J = J&Z”, _ - 

we get Jd” = Jz n Ani’ and the conclusion follows. 0 

3. The main theorem 

In this section we give a proof of an extended version of a conjecture of J. Sally. 

Theorem 3.1. Let (A,4’) be a d-dimensional Cohen-Macaulay local ring and t an 

integer, t > 2. The following conditions are equivalent: 

l indeg(A) > t and e = (h’i-‘) + 1. 

l There exists an integer s, t < s < (h+,!P’), such that 

pA(z) = c:r; (h+;-l)z’ + zs 
(1 -z)d . 

If either of the above conditions holds, then depth(G) > d - 1 and G is Cohen 

Macaulay if and only tf s = t. 

We start by proving this in the one-dimensional case. First we need a couple of easy 

results which will be used also later. 

Lemma 3.2. Let A be a ring, Z and K ideals in A. Zf t 2 2 is an integer such that 

K C I’ and j,(I’/K) = 1, then either Z ‘+l=IK or Z’=K+(a’) for some aEI. 

Proof. Let I=(al,...,a,); if ail’-‘LK for every i= l,...,~, then P&K, a contra- 

diction. Hence let a := al and al’-’ 6 K. If I”’ # IK, we claim that a’ #K, which 

gives the conclusion. To prove the claim we show that if with 2 5 j 5 t we have 
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dI”-j C K then aj-lIt-j+l C K. L e us assume by contradiction that aj-‘b #K for t - 

some & I’-j+‘; then I’ = K + (aj-lb) so that 

I’+’ = IK + aj-‘bI C IK + al’ = IK + aK + (ajb) C IK + ail’-j+’ c IK. _ 

The conclusion follows. 0 

Since in the following A is Cohen-Macaulay, we can find a maximal superficial 

sequence in A and we denote as usual by J the ideal it generates. 

Proposition 3.3. Let (A,&) be a local Cohen-Macaulay ring of dimension one or 

two 

1. 

2. 

3. 

4. 

5. 

such that indeg(A) > t > 2 and e = (h+i-l ) + 1. The following conditions hold 

vt_l =+Y’/J33’-‘)= 1. 

dj+2 C JM for every j > t - 1. 

Either-d’+’ = Jk?’ or there exists w E & such that dji’ = J.Mj + (wJ+’ ) for 

every j>t - 1. 

A(Aj+l/JAj) < 1 for every j > t - 1. 

vj=A(Mj+‘/J_&j)=e- (“7) for every j=O,...,t-2. 

Proof. If d = 1, since indeg(A) > t we have 

e-l= 

Hence, by (3) we get 

e - 1 =&(t - I)=e - 3L(dP/x~‘-1), 

which implies 

&6QXJP’) = 1 

as required. 

If d = 2, by (5) we have 

1 = e - H,(t - 1) + &(t - 2) = vt_’ = n(&‘t/J&‘-‘) - A(A’-’ : J/A’-‘). 

Since by (1) ~t-1:J~&t-1:x=&r-2, we have 

&&‘/J&‘-‘) = 1. 

This proves 1. 

We prove now 2. One has 

A’ > A?+’ + J&Y-’ > Jd’-’ 

and also, if At = A!‘+’ + J4’-‘, by Nakayama .A$? = J&‘-l against 1. Hence, 

A”’ & J,tY-’ 

and the second assertion follows by multiplication by .A. 
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We pass to the third assertion. Since n(A’/J&‘-I)= 1, if A@+’ # J.k”, by the 

above lemma there exists an element w E A such that 

~2’~ = Jsk”-’ + (w’). 

But if j > t and Aj = J&C-’ + (d), we get 

This proves 3. Since _&ji’/Jdt’j are k-vector spaces, the fourth assertion also follows. 

We prove now the last assertion, If d = 1, since indeg(A) > t, the formula is a 

consequence of (3). If d = 2, we need only to apply (5). 0 

Proposition 3.4. Let (A, 4) be a Cohen-Macaulay local ring of dimension one and 

t an integer, t > 2. The following conditions are equivalent: 
l indeg (A) > t and e = (h’Lp’) + 1. 

l There exists an integer s such that t 5 s < (“‘i-l) and 

pA(z) = xi:; (h+f-l)Z’ + 2 
(1 -z) . 

Proof. We need only to prove that the first condition implies the second. Since 

indeg(A) > t, we have 

k&(j)= h;’ ( ) 
for every j 5 t - 1. By (3) and 4 in the above proposition, we have for every j 2 t 

HA(j)=e-i,(~j+‘,x~j)L (,,,,>. 

If we let s be the least integer such that HA(S) = e = (“‘L-l) + 1, then As+’ =x.&P, so 

that A%++’ =x,/P and HA(T) = e for every r 2 s. This proves that 

pA(z) = c;:; (h+f-‘)zi + 2 
(1 -z) 

By the well-known theorem of Macaulay which characterizes the Hilbert functions 

of standard graded algebras, HA(e - 1) = e so that s 5 e - 1 = (“‘f’). 

This gives the conclusion. 0 

We come back now to the general case of the theorem. First of all we have s = t if 

and only if the h-vector of A coincides with that of its artinian reduction. Hence, the 

last assertion on the Cohen-Macaulayness of G is clear. 
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Further if 

pA(z) = Cf:; (y’)Z’ + zs 
(1 -z)d ’ 

then e = (“‘L-‘) + 1 and in&g(d) > t. The converse holds easily if d = 0, while if 

d = 1, it follows by the above proposition. 

If d > 2, we let 

B := A/&,. . ,x~_~) 

and 

c := A/(x’,. .,x&l), 

where xi,. . . , Xd_ 1 is a superficial sequence in A. We have dim(C) = 1, dim(B) = 2, 

+ 1 =e(A)=e(B)=e(C) 

and by (2) 

indeg(C) > indeg(B) > indeg(A) > t. 

Hence, by Proposition 3.4, 

pc(z) = cf:; (y)Zi + zs 
(1 -z) . 

If we can prove that the depth of the associated graded ring of B is positive, then, 

by using Sally’s machine, we get depth(G) > 1 + d - 2 = d - 1. This implies 

PC(Z) 
PA(‘) = (1 _ Z)&’ = 

xi;; (yz’ + zs 
(1 -2)d 

and the conclusion of the theorem follows. 

Henceforth, we may assume dim(A) = 2 and, by the above remark, we need to prove 

that depth(G) _> 1. As before, we let J = (x, y) be the ideal generated by a superficial 

sequence and R := AIxA. 

Since R is now a one-dimensional Cohen-Macaulay local ring with e = (“‘L-‘) + 1 

and indeg(R) > t, by Proposition 3.4 and (3) we have 

3-l f-l S-l 

e'(R) = c aj = c (e - f&(i)) + c (e - fb(.d) 
j=O j=O j=t 

+s-t=te+s-t- 

Further, since d = 2, 

e,(A)=q(R)=te+s- t - 
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Proposition 3.5. With the above notation the following conditions hold: 

l q&j+l/JJl”e)= 1 for every j=t - l,...,s - 1. 

l cAj+l Lx=Aj for every j=O,...,s- 1. 

l Vjj=l for everyj=t- l,...,S- 1. 

l depth(G) > 0 H &Pt’ = JM”. 

Proof. From the proof of Proposition 3.4, we have 

It is easy to see and proved in [9] that for every j 2 0 there is an exact sequence 

O+,~j:x/.A?j:J~~ j+l lx/J.i 5 A+/JAfj --f (~%/x)j”/y(_4i/x)’ + 0. 

Thus, if t - 1 2 j 5 s - 1, since n(Jlj+‘/J&j) < 1, the first assertion follows from 

the above exact sequence. 

The second property follows by (1) if j 2 t - 1. Let j 2 t; since 

.kj:X>_4j:J>Aj-t. _ 

by induction on j the first module on the left in the above exact sequence is 0, hence 

the second one is zero too since the last two modules share the same length. 

The third assertion is now a trivial consequence of the first two. 

Finally if depth(G) > 0, then x* is a regular element in G, hence .A?+’ :x = .K”. 

Since if j = s the last module in the above exact sequence is zero, we get .A’+ = AV’“. 

Conversely, let .A?+’ = JAY. Since 

~~-‘=.~‘:n>~~“:J>~‘-‘, 

we get by the above exact sequence A?‘+’ :x = J@. Since 4jf’ = JAj for every j > s, 

we can go on and finally prove that 

ckj+t :x=.A@ 

for every j 2 s. Hence, by the second assertion, .Aj+’ : x = .k?J for every j 2 0 and 

this implies depth(G) > 0, as desired. 0 

We will need the following result which has been proved in [9] and which is the 

crucial point in the proof of the theorem. We do not insert here a proof; we only remark 

that, as we said before, $(%/A”) is a graded module over the Rees algebra .%!(~fl). 

By using this and the standard trick as in the classical Cayley-Hamilton theorem, one 

gets the conclusion. 

Proposition 3.6. Let (A, A) be a local ring, p > 2 an integer and J c J& an ideal 

of A. For every integer n = 2,. , p suppose we are given ideals 

I, = (al,, . . . , avnn) C 26. 
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Let w be an element in d such that 

WI2 C JI2+13 +A3, 

WI3 G J212 + JI3 + I4 + d4, 

wIP_, C Jp-212 + Jp-313 + . . + JI,_, + Ip + dp, 

WIP c Jp-‘I2 + Jp-2i3 + . . + Jr, + &Zp+‘. 

If we let v := cl!=2 vi, then there exists an element fl E J&“-l such that for every 

n=2 ,..., pandi-l,..., v, 

w”ai,, E gain mod JL?‘~. 

We can finish now the proof of the theorem. 

Theorem 3.7. Let (A,&) be a Cohen-Macaulay local ring of dimension two such 
that indeg(A) > t and e = (h’i-‘) + 1. Then 

depth(G) 2 1. 

Proof. For every n 2 2 we have 

% > J&?-l + A” 2 Jd”-’ 

and 

;c(z/JR-‘)=p,_,. 

Hence, 

and equality holds if and only if 

A’” &J.,k!“-‘. 

Further we can find elements al,, . . . , avnn E z such that their residue classes modulo 

J4-+ An form a minimal system of generators of the module z/Jd-+ .kZn. 
It is clear that we have 

v, 5 1(%/J&“-’ + A”) 5 pnel 

and if -%eng JM?, then 

VII < pn-1. 

If n 2 t, by Proposition 2.2, we can be more precise, namely 

(11) 

vn I pn-I - b-1. 
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If we let 

&I := (%I,~~. ,4,n), 

then I,, C 2 and 

%=J.k+‘+M’+I,. 

Since 

we get 

Going on in this way, we obtain for every r 2 2 

2 = 2 Jr-q. + A’. (12) 
j=2 

Now we recall that by Proposition 2.2 and the last assertion in Proposition 3.3, for 

every j < t - 2, we have 

hence 

h+t ( 1 
t-2 

ef- hfl 
+s-t=el=Cpj=Cpj+ C Pj 

20 j=O j>t-I 

= et - lf C Pj. 
j>t-1 

It follows that 

c pj<S-t+l. 
j>t-I 

We distinguish two cases: 

(i) pt_ 1 = . . = ps_l = 1. With this assumption the above inequality turns out to be 

an equality and this implies 

Pj = Vj 
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for every j 5 t - 2 and 

p$ =o. 

Further by Proposition 3.5, we have 1 = nj = pj for t - 1 5 j < s - 1. By (lo), this 

gives a, = 0 for every n < s, hence 

&@+i &zi-= Jzs = Jds C u@+’ 

which implies 

AS+’ = J&” 

so that, by Proposition 3.5, depth(G) > 1. 

(ii) There exists an integer j such that t - 1 < j 5 s - 1 and pj # 1. In this case, 

since by Proposition 2.2 and 3.3 ~~-1 > ut-i = 1, the condition xj2t_1 pj 5s - t + 1 

implies s > t + 1 and pj = 0 for some t < j 5 s - 1. Thus, we may assume 

Pt-1%.-.,Pp-1 # 0, pp=o 

with t<p<s-1. 

We also let k be the least integer n such that An+’ C Jz. 

We remark that 

JfS?tg J&i= 

otherwise by Proposition 2.2, A!” &J n A’ = J&T’-‘, which contradicts the equality 

&&“/JA’-‘) = 1. 

Further, since pp = 0, APi’ C F = Jz, hence we have 

t<k<p<s-1. 

By the true definition of k and ( 1 1 ), we have for every j = t, . . . , k 

Vj < Pi-1 

and for every j 2 t - 1 

(13) 

Vj 5 pj_1 - Vj_1. 

We refer now to Proposition 3.3. If At+’ = J&‘, then JZ’+’ = J+&‘“, and 

depth(G) > 0. Otherwise we can find an element w E ~4’ such that A‘j+l = J&j + 

(WI+‘) for every j > t - 1. By using (12), we get for every n=2,...,p- 1 

IIf’ 

wl, c z= c Jn+’ -‘Ii + An+’ 

j=2 

and 

' Wl,&i==J~=~J pf'-j4 +J&PC eJP+l-jG f&p+'. 

j=2 j=2 
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By applying the above proposition with v = CF=, v,, we can find an element (r E 

J&iF1, such that for every i=l,...,v, 

w”ai, E aai, mod A?‘. (14) 

On the other hand, since ACki’ C Jz = Et=2 Jk+‘-j4 + J.,dk, we can write 

Wk+l = 2 2 rniiUii f b, 

j=Zi=l 

where mij E Jk”-j, b E JAk. Using this and (14) we get 

W 
v+k+l = Wk+lWv = 

A $ mijUijW’ + bw” = 912 mii(oaij + c) + bw”, 
j=2i=] j=2i=1 

where c E &Vii. Since J' < k, rnyz E J k+1-j_4P’fj & JA$“‘+~ and bw” E JAfvfk, so that 

WY+k+l _ -$C mijaij + 4 = CT(W~+’ - 6) + q 
j=2i=l 

with q E JA+?+~. Since r~ E JAF~ and wk+’ - b E A?~+‘, we get 

W 
vik+l E J&v+k 

which, by Proposition 3.3, implies 

We finally remark that by ( 13) and (11) 

k 

v+k=~vi+ki~(pi-I-ai-I)+~(pi-l-l)+ f: Pi_l+k 
i=2 i=2 1=t r=k+l 

t-2 

<CPi-(k-t+l)+k-Cvi=el-Po+t-l-C 
i>l i=l 

1;: (e- (“ti)) 

t-2 

= et - fs-t-e+l+t-l-(t-2)e+C 
i=l 

=e-(~=:)+~+(“:~~‘)-l=~. 

Hence 

and the conclusion follows by Proposition 3.5. q 
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We end the paper by giving suitable examples of Cohen-Macaulay local rings A 

such that e = (“‘L-‘) + 1 and indeg(d) 2 t. 

Let 

A = k[[?, t* + 2, P]], 

B = k[[?, t8 + t9, P]], 

c = k[[t”, P + P, P, P]] 

Then we have 

PA(z) = 
1 + 22 + 3z2 + z4 

l-z ’ 

8.4z) = 
1 + 2z + 322 + z5 

l-z ’ 

PC(Z) = 
1 + 32 + 6z2 + z6 

l-z 

In all these examples t = 3 and G is not Cohen-Macaulay, so that A has maximal 

Cohen-Macaulay type. 

In the following class of examples A has maximal Cohen-Macaulay type and G is 

Cohen-Macaulay. 

Let t > 3 and I CR := k[[X, Y,Z, T]] be the ideal generated by the maximal minors 

of the following t x (t + 1) matrix, where if t = 3 we only consider the first, the second 

and the last row: 

X z oo......o\ 

Y XfZ2 T 0 . . . . 0 

0 0 YZO.... .o 

0 0 OYZO... .o. 
. . . . . . . . . . . . . . . . . . . . . 

0 0 . . . ..OYZO 

\O 0 . . . . ..0T2Z/ 

If we let A = R/I then indeg(rl) = t, h = 2 and e = (‘;I) + 1. 

The above computations have been carried over with the computer algebra program 

COCOA. 
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